LightBlog
Contact at mumbai.academics@gmail.com or 8097636691/9323040215
Responsive Ads Here

Wednesday, 14 February 2018

QUERY EXPANSION WITH ENRICHED USER PROFILES FOR PERSONALIZED SEARCH UTILIZING FOLKSONOMY DATA

QUERY EXPANSION WITH ENRICHED USER PROFILES FOR PERSONALIZED SEARCH UTILIZING FOLKSONOMY DATA

Abstract:
Query expansion has been widely adopted in Web search as a way of tackling the ambiguity of queries. Personalized search utilizing folksonomy data has demonstrated an extreme vocabulary mismatch problem that requires even more effective query expansion methods. Co-occurrence statistics, tag-tag relationships, and semantic matching approaches are among those favored by previous research. However, user profiles which only contain a user’s past annotation information may not be enough to support the selection of expansion terms, especially for users with limited previous activity with the system. We propose a novel model to construct enriched user profiles with the help of an external corpus for personalized query expansion. Our model integrates the current state-of-the-art text representation learning framework, known as word embeddings, with topic models in two groups of pseudo-aligned documents. Based on user profiles, we build two novel query expansion techniques. These two techniques are based on topical weights-enhanced word embeddings, and the topical relevance between the query and the terms inside a user profile, respectively. The results of an in-depth experimental evaluation, performed on two real-world datasets using different external corpora, show that our approach outperforms traditional techniques, including existing non-personalized and personalized query expansion methods.

No comments:

Post a Comment