LightBlog
Contact at mumbai.academics@gmail.com or 8097636691/9323040215
Responsive Ads Here

Monday, 26 February 2018

Privacy-Preserving Multi-keyword Ranked Search


Privacy-Preserving Multi-keyword

 Ranked Search


Abstract—With the advent of cloud computing, data owners are motivated to outsource their complex data management systems from local sites to the commercial public cloud for great flexibility and economic savings. But for protecting data privacy, sensitive data has to be encrypted before outsourcing, which obsoletes traditional data utilization based on plaintext keyword search. Thus, enabling an encrypted cloud data search service is of paramount importance. Considering the large number of data users and documents in the cloud, it is necessary to allow multiple keywords in the search request and return documents in the order of their relevance to these keywords. Related works on searchable encryption focus on single keyword search or Boolean keyword search, and rarely sort the search results. In this paper, for the first time, we define and solve the challenging problem of privacypreserving multi-keyword ranked search over encrypted cloud data (MRSE). We establish a set of strict privacy requirements for such a secure cloud data utilization system. Among various multikeyword semantics, we choose the efficient similarity measure of “coordinate matching”, i.e., as many matches as possible, to capture the relevance of data documents to the search query. We further use “inner product similarity” to quantitatively evaluate such similarity measure. We first propose a basic idea for the MRSE based on secure inner product computation, and then give two significantly improved MRSE schemes to achieve various stringent privacy requirements in two different threat models. Thorough analysis investigating privacy and efficiency guarantees of proposed schemes is given. Experiments on the real-world dataset further show proposed schemes indeed introduce low overhead on computation and communication. Privacy-Preserving Multi-keyword Ranked Search
CONCLUSION:- In this paper, for the first time we define and solve the problem of multi-keyword ranked search over encrypted cloud data, and establish a variety of privacy requirements. Among various multi-keyword semantics, we choose the efficient similarity measure of “coordinate matching”, i.e., as many matches as possible, to effectively capture the relevance of outsourced documents to the query keywords, and use “inner product similarity” to quantitatively evaluate such similarity measure. For meeting the challenge of supporting multi-keyword semantic without privacy breaches, we propose a basic idea of MRSE using secure inner product computation. Then we give two improved MRSE schemes to achieve various stringent privacy requirements in two different threat models. Thorough analysis investigating privacy and efficiency guarantees of proposed schemes is given, and experiments on the real-world dataset show our proposed schemes introduce low overhead on both computation and communication. In our future work, we will explore supporting other multikeyword semantics (e.g., weighted query) over encrypted data and checking the integrity of the rank order in the search result.

No comments:

Post a Comment